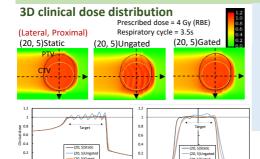


Physics

PTCOG-AO2025-ABS-0155


Study on the impact of temporal parameters on dose uniformity In layer-stacking irradiation with carbon-ion beams

Yuki Furuta¹⁾, Mutsumi Tashiro²⁾ and Hiroshi Sakurai¹⁾

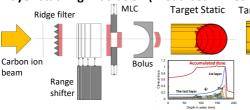
- 1) Graduate School of Science and Technology, Gunma University, Japan
- 2) Gunma University Heavy Ion Medical Center, Japan

Simulation Result

Evaluation metric : Conformity index $\Delta CI = CI_{Move} - CI_{Static}$ (CI = $(V_{95} - V_{105})/CTV$)

 ΔCl_{worst} : The worst ΔCl for <u>respiratory cycles</u>

- <±5%
- →Clinically acceptable
- →Accepted maximum motion
 - = Acceptable motion amount during irradiation

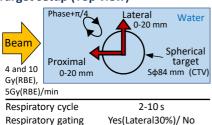

Acceptable motion amount during irradiation

ΔCI ΔCI worst Prescribed dose = 4 Gy(RBE), Ungated Prescribed dose = 4 Gy(RBE), Ungated 0.0 0.0 **-5%** -10.0 -10.0 € -20.0 -30.0 ğ -40 0 -40.0 -50.0 -60.0 15 Respiratory Cycle [s] CTV motion amount during irradiation (mm)

Background / Aim

Layer-stacking irradiation (Broad beam method)

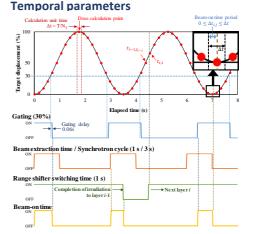
Target moving The dose uniformity within the target may be insufficient.


Tajiri S et al., 2017

→Not applied in clinical use with non-negligible motion

Aim: To show the motion tolerance from dose uniformity evaluation

Simulation method


Target setup (Top view)

3D clinical dose distribution

- · 1D PDD→3D expansion
- Using TPS data
- Clinical dose = Physical dose × RBE (Mixed beam model employed by GHMC)

This simulation method was validated for reliability through comparisons between measured and simulated physical doses. Hasebe Yet al., 2025

